Shal/Kv4 Channels Are Required for Maintaining Excitability during Repetitive Firing and Normal Locomotion in Drosophila

نویسندگان

  • Yong Ping
  • Girma Waro
  • Ashley Licursi
  • Sarah Smith
  • Dai-An Vo-Ba
  • Susan Tsunoda
چکیده

BACKGROUND Rhythmic behaviors, such as walking and breathing, involve the coordinated activity of central pattern generators in the CNS, sensory feedback from the PNS, to motoneuron output to muscles. Unraveling the intrinsic electrical properties of these cellular components is essential to understanding this coordinated activity. Here, we examine the significance of the transient A-type K(+) current (I(A)), encoded by the highly conserved Shal/K(v)4 gene, in neuronal firing patterns and repetitive behaviors. While I(A) is present in nearly all neurons across species, elimination of I(A) has been complicated in mammals because of multiple genes underlying I(A), and/or electrical remodeling that occurs in response to affecting one gene. METHODOLOGY/PRINCIPAL FINDINGS In Drosophila, the single Shal/K(v)4 gene encodes the predominant I(A) current in many neuronal cell bodies. Using a transgenically expressed dominant-negative subunit (DNK(v)4), we show that I(A) is completely eliminated from cell bodies, with no effect on other currents. Most notably, DNK(v)4 neurons display multiple defects during prolonged stimuli. DNK(v)4 neurons display shortened latency to firing, a lower threshold for repetitive firing, and a progressive decrement in AP amplitude to an adapted state. We record from identified motoneurons and show that Shal/K(v)4 channels are similarly required for maintaining excitability during repetitive firing. We then examine larval crawling, and adult climbing and grooming, all behaviors that rely on repetitive firing. We show that all are defective in the absence of Shal/K(v)4 function. Further, knock-out of Shal/K(v)4 function specifically in motoneurons significantly affects the locomotion behaviors tested. CONCLUSIONS/SIGNIFICANCE Based on our results, Shal/K(v)4 channels regulate the initiation of firing, enable neurons to continuously fire throughout a prolonged stimulus, and also influence firing frequency. This study shows that Shal/K(v)4 channels play a key role in repetitively firing neurons during prolonged input/output, and suggests that their function and regulation are important for rhythmic behaviors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila.

Different K(+) currents participate in generating neuronal firing patterns. The Drosophila embryonic "giant" neuron culture system has facilitated current- and voltage-clamp recordings to correlate distinct excitability patterns with the underlying K(+) currents and to delineate the mutational effects of identified K(+) channels. Mutations of Sh and Shab K(+) channels removed part of inactivati...

متن کامل

A novel subunit for shal K+ channels radically alters activation and inactivation.

Shal (Kv4) potassium channel genes encode classical subthreshold A-currents, and their regulation may be a key factor in determining neuronal firing frequency. The inactivation rate of Shal channels is increased by a presently unidentified class of proteins in both Drosophila and mammals. We have cloned a novel Shal channel subunit (jShalgamma1) from the jellyfish Polyorchis penicillatus that a...

متن کامل

Acute Knockdown of Kv4.1 Regulates Repetitive Firing Rates and Clock Gene Expression in the Suprachiasmatic Nucleus and Daily Rhythms in Locomotor Behavior

Rapidly activating and inactivating A-type K+ currents (IA) encoded by Kv4.2 and Kv4.3 pore-forming (α) subunits of the Kv4 subfamily are key regulators of neuronal excitability. Previous studies have suggested a role for Kv4.1 α-subunits in regulating the firing properties of mouse suprachiasmatic nucleus (SCN) neurons. To test this, we utilized an RNA-interference strategy to knockdown Kv4.1,...

متن کامل

Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron.

Ionic currents underlie the firing patterns, excitability, and synaptic integration of neurons. Despite complete sequence information in multiple species, our knowledge about ion channel function in central neurons remains incomplete. This study analyzes the potassium currents of an identified Drosophila flight motoneuron, MN5, in situ. MN5 exhibits four different potassium currents, two fast-a...

متن کامل

CONTRIBUTIONS OF EAG PROTEIN TO NEURONAL EXCITABILITY IN IDENTIFIED THORACIC MOTONEURONS OF DROSOPHILA by

Diversity in the expression of ion channel proteins among neurons allows a wide range of excitability, growth and functional regulation. Ether-a-go-go (EAG), a member of the voltage-gated K channels, was characterized by spontaneous firing in nerve terminals and enhanced neurotransmitter release. In situ whole-cell patch-clamp recordings performed from the somata of Drosophila larval thoracic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011